Compactness and Non-compactness for the Yamabe Problem on Manifolds with Boundary
نویسنده
چکیده
We study the problem of conformal deformation of Riemannian structure to constant scalar curvature with zero mean curvature on the boundary. We prove compactness for the full set of solutions when the boundary is umbilic and the dimension n ≤ 24. The Weyl Vanishing Theorem is also established under these hypotheses, and we provide counter-examples to compactness when n ≥ 25. Lastly, our methods point towards a vanishing theorem for the umbilicity tensor, which will be fundamental for a study of the nonumbilic case.
منابع مشابه
A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary
We prove existence and compactness of solutions to a fully nonlinear Yamabe problem on locally conformally flat Riemannian manifolds with umbilic boundary.
متن کامل2 00 6 Compactness of solutions to the Yamabe problem . III YanYan
For a sequence of blow up solutions of the Yamabe equation on non-locally confonformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates ...
متن کاملCompactness of solutions to the Yamabe problem . III
For a sequence of blow up solutions of the Yamabe equation on non-locally conformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates wou...
متن کاملthe International Congress of Chinese Mathematicians Fine Analysis of
Blow up analysis has been very useful in the study of nonlinear partial diier-ential equations. Usually blow up analysis is done with respect to energy norms, namely, giving asymptotic description in Sobolev norms to a sequence of solutions (or approximate solutions) of nonlinear partial diierential equations. In a number of applications, pointwise asymptotic analysis is needed. This is a ner b...
متن کاملNew operators through measure of non-compactness
In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...
متن کامل